

Power Basic to PureBasic

Reference Aid

Amílcar Matos Pérez

San Juan, Puerto Rico
(c)2014 AMP All rights reserved.

Page 2

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book has no warranty, either express or implied. The author
will not be held liable for any damages to be caused either directly or indirectly by the instructions
contained in this book, or by the software products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademark name as such, this book uses the names only in
an editorial fashion and to the benefit of the trademark owner with no intention of infringement of the
trademark. PowerBasic,Inc. is the owner of PowerBasic. http://www.powerbasic.com/. Fantaisie
Software is the owner of PureBasic. http://www.purebasic.com/. No ownership claim is made.

About the Author

Amílcar specializes in building database and xml driven software for business enterprises. He has used
PowerBasic compilers since its beginning. Amílcar Matos Pérez can be reached in the Pure Basic forum.
http://www.purebasic.fr/english/index.php

About this Book

First edition: December 2014. Compiler reference: PureBasic 5.30. Written and edited in San Juan,
Puerto Rico.

How is this aid organized?

The text is in three sections; the first level translations (meaning they are very easy). The second level
translations (meaning they require your attention). And the third level – which is the process to follow
to achieve a successful translation.

http://www.powerbasic.com/
http://www.purebasic.com/
http://www.purebasic.fr/english/index.php

Page 3

Contents
Introduction .. 4

First the easy ones... ... 5

Translation – the second level .. 8

The Process - Sharing the experience! 12

Conclusion .. 13

Page 4

Introduction

Considering the migration of your code base to PureBasic? This booklet is
intended to help you.

This is a work in progress, deliberately simple and very basic. No high level
constructs or theory here. Just some issues enumeration. But I know that if at
least this aid had been available for me initially, my migration would have been
faster and easier. Well now it is yours! With this reference you will know which
keywords can be readily exchanged without fear or testing or any doubts; which
can not be exchanged; which no matter how much time you invest searching will
have to be recoded. Of course this is no exhaustive enumeration nor all inclusive.
I would have desired to do it better, but the usual business constraints don’t let
me do so. Anyway something is better than nothing. Remember that your own
coding practices make a difference and with the Pure Basic community ready to
help, you will farewell.

I want to contribute this writing to both the greater basic language community
and the Pure Basic Community. I understand that others might be in the need to
migrate their code base into another language. Re-coding into other non basic
languages is a loss for all. With some help like this document that losses can be
prevented. No one wants Power Basic to die. But nobody wants to loose all those
talented programmers to the “dark side” either. So let’s provide needed tools for
them to stay in the greater basic language community. With that goal in mind I
offer you dear reader this aid. Please receive it as a small gift of one of your peers.
Happy holidays!

Amílcar Matos-Pérez

San Juan, Puerto Rico

December 1st, 2014.

Page 5

1. First the easy ones...
1.1 Comments

For comments Pure Basic uses the semicolon. All single quotes and REM statement can be safely
substituted by the semicolon. Please remember that single quotes can appear within quoted
strings.

PowerBasic PureBasic Note
‘ (single quote) ; Can appear inside quoted strings
REM ;

1.2 String functions
1.2.1 Decoration

PureBasic does not use any decoration on its string functions. Delete the dollar sign on each
string function.

PowerBasic PureBasic
Chr$ Chr
Lcase$ Lcase
Trim$ Trim
Ucase$ Ucase
Mid$ Mid

1.2.2 Not Allowed Syntax

PowerBasic PureBasic Not Allowed Syntax

Trim$ Trim The ANY keyword. PureBasic allows only one
character trimming.

LTrim$ LTrim The ANY keyword. PureBasic allows only one
character trimming.

RTrim$ RTrim The ANY keyword. PureBasic allows only one
character trimming.

Mid$ Mid
The assignment mode for character substitution
is not allowed in PureBasic. Ex.
Mid$(Var$, 5,1) = “P” <= this is not allowed.

Page 6

1.3 Variables
1.3.1 Local statement

All Local statements can be safely translated as Protected. The syntax should be adjusted
afterwards.

1.3.2 Variable Decorations
The dollar sign use for string variables is the same in both compilers, so no need to change
them, leave them as they are.
Other variable decorations used in Power Basic must be deleted. Take care with monetary
variables (@ and @@).

1.3.3 Variable Names
Some variable names may conflict with reserved words in PureBasic. In my experience this is
not a big concern; any conflicts are very easily solved.

1.3.4 Variable Definitions
As Long, As String, etcetera; have to be translated to the PureBasic period-letter format. The
Pure Basic Help document contains a very well designed table. Just press F1 and write
variables in the index tab.
Take care that PowerBasic uses the same keywords (As Long, As String...) for Functions. In
those instances the PureBasic format (period-letter) follows the Procedure keyword.

PowerBasic PureBasic
as long .l
as string .s
Function One() As Long Procedure.l One()

1.4 Commands

Some commands translate easily because they have the same syntax, although not the same
name.

PowerBasic PureBasic
Sleep Delay
Timer ElapsedMilliseconds
Tally CountString
Instr FindString
StrInsert InsertString
Close CloseFile
Kill DeleteFile
Parse$ StringField
ParseCount CountString

Page 7

1.5 Structures
Power Basic uses the construct “IF...THEN”; Pure Basic uses the construct “IF...” without the
THEN keyword. Simply delete every instance of the THEN keyword.
Power Basic uses the construct “SELECT CASE ...”; Pure Basic uses the construct “Select ...”
without the CASE keyword in the select statement line. Note that it’s only in the select
statement line, since each case of the select construct is named “Case”. Therefore the CASE
keyword can be deleted in all the select statements.
END IF is used in both compilers in the same way, but they are written differently. Power
Basic uses a space between both words while Pure Basic omits the space. Delete the space
between both words. The same happens with END SELECT; the space between both words
has to be deleted.
The END SUB and END FUNCTION are translated to the EndProcedure keyword.
Since Pure Basic makes no distinction between Function and Sub’s all can be translated
directly to the Procedure keyword.

PowerBasic PureBasic Note
THEN

Delete the keyword.

Select Case Select Delete the CASE keyword.
End If EndIf Delete the space.
Else If ElseIf Delete the space.
End Select EndSelect Delete the space.
End Sub EndProcedure Replace with PureBasic keyword.
End Function EndProcedure Replace with PureBasic keyword.
Function Procedure Replace with PureBasic keyword.
Sub Procedure Replace with PureBasic keyword.

Page 8

2. Translation – the second level
2.1 Constants
2.1.1 They look easy at first sight, they are not. The translations of constants should be done with

some care. Power Basic uses the dollar sign; Pure Basic uses the sharp sign. But some
constants are already assigned by the Pure Basic compiler with minor differences that must
be taken into account.

PowerBasic PureBasic Notes
$CR #CR$ Pure Basic also has #CR
$CRLF #CRLF$
$SPC

No equivalent use: Space(1)

$TAB #TAB$
%MOD_CONTROL #MOD_CONTROL
%VK_L #VK_L

2.2 Structures
2.2.1 Direct translations

PowerBasic PureBasic Notes

Exit Function ProcedureReturn

Power Basic functions returns with any
previously pre-assigned return value.
Pure Basic does not. Meaning, if the
code depended on that invisible
feature, now it must be made explicit.

Exit Sub ProcedureReturn
2.2.2 Careful translations

PowerBasic PureBasic Notes

Function = ProcedureReturn

Note the equal sign after the function
keyword. This is used to pre-assign the
function return value. Pure Basic uses
ProcedureReturn and omits the equal
sign. But ProcedureReturn returns
immediately whereas Function = does
not.

2.2.3 Loops
Do / Loop constructs in Power Basic can be translated to Pure Basic with the Repeat/Until
construct. Substitute DO with the Repeat keyword, and in the LOOP UNTIL line delete the
LOOP keyword. Care should be exercised if the LOOP line does not have the UNTIL keyword.

PowerBasic PureBasic Notes
DO Repeat

LOOP UNTIL Until Do not replace if the until keyword is
absent in this code line.

Page 9

2.2.4 Call me back!
Callback structures are procedures in Pure Basic. Translate the Callback Function keyword to
Procedure. But something more has to be done: Identify that procedure to the compiler as a
callback procedure with the SetWindowCallback statement.

PowerBasic PureBasic
Callback Function Procedure.l WinCallback(hWnd, WMsg, WParam, LParam)
Callback Function SetWindowCallback(@WinCallback()) ; to activate the callback

2.2.5 API Functions

In Pure Basic every API function requires an ending underscore and parenthesis for the
parameters. In my experience this works flawlessly. Put that underscore add the parenthesis
around the parameters and away you go. The API parameters need the change to the sharp
sign (explained previously), and the substitution of some Power Basic terms. For example
CBHNDL which in Pure Basic is WindowId ().
Is or or, or another thing? (no typo here you read right, there are three sequential or’s)
In Power Basic API functions OR is used to join two constants. Pure Basic uses the vertical
bar symbol “|” (means bitwise or). So if you want to get a full night sleep remember to
translate those or’s, OR otherwise the bugs will not let you sleep.

PowerBasic PureBasic
API functions Require an ending underscore and parenthesis for the parameters
%MOD_CONTROL #MOD_CONTROL
CBHNDL WindowID()
OR Use vertical bar (bitwise OR)

2.3 Commands
2.3.1 Let’s deal with those commands that change completely but easily. That’s the case of INCR.

Power Basic uses this command to increase the value of the variable by one. Pure Basic does
not have it. So every instance of INCR Var has to be rewritten as Var = Var + 1. (Pure Basic
shorthand: Var+1).

PowerBasic PureBasic Notes
Incr var = var + 1
Decr var = var – 1

Dim(0 to Var) Dim(Var)
Caution. If the starting number is other
than zero, then conversion must be
done manually.

Page 10

The Replace statement is also one that changes. The conversion is the statement name and
the position of one parameter, see below;

PowerBasic REPLACE That$ WITH This$ IN String$
PureBasic String$ = ReplaceString(String$, That$, This$)

2.3.2 For – Next Loops and One off bugs.
Pure Basic arrays always start at zero. Power basic arrays not necessarily start at zero.
Usually this is a non-issue in translation (the array will have one or more empty positions),
but be alert to any possible one off bugs that appear. I’m not recommending this be left as
is. The first goal is to translate the code and have a working solution as fast as possible, with
the less time and money investment possible. Once you have that working solution then
these details can be addressed.

2.3.3 Power Basic has the following syntax for calling a function;
CALL FunctionName&(Var$, Collection$(), Parameter3) To Result&
This syntax translate easily into Pure Basic as;
Result = FunctionName(Var$, Collection$(), Parameter3)

Note the following;
a. The function name decoration (&) is gone.
b. The TO keyword is gone.
c. The CALL keyword is gone.
d. The Result variable now is on the left with an equal sign added.

2.3.4 BY REF, BY VAL keywords
Pure Basic variables always pass into procedures BY VAL. To pass a variable BY REF into a
procedure pass the variable pointer.

2.3.5 The new procedure commands;

Join Requires a new procedure. Suggested name: JoinArrayIntoString
Parse Requires a new procedure. Suggested name: ParseStringIntoArray
StrDelete Requires a new procedure. Suggested name: StrDelete
Mid() = Var$ Requires a new procedure. Suggested name: SubstituteCharacter
Max Requires a new procedure. Suggested name: Maximum
Min Requires a new procedure. Suggested name: Minimum

Page 11

2.3.6 Power Basic has the following syntax for opening a read only file;
FileNb& = FREEFILE
OPEN Filename$ FOR INPUT AS #FileNb&
This syntax translate easily into Pure Basic as;
FileNb = ReadFile(#PB_ANY, Filename$)

Note the following;
a. Variable decoration (&) is gone.
b. FOR INPUT keywords are gone. The ReadFile statement is just for this input only

purpose.
c. The FREEFILE statement is gone. The #PB_ANY does the job.
d. Power Basic has other file syntax, I have shown an example. Manual conversion is not to

be feared if the code is understood.

2.3.7 For reading a file Power Basic uses;

LINE INPUT #FileNb, String$

This syntax translate easily into Pure Basic as;

String$ = ReadString(FileNb)

2.3.8 To write to a file Power Basic uses;

Print#FileNb, String$

This syntax translate easily into Pure Basic as;

WriteStringN(FileNb, String$)

2.3.9 Power Basic uses the following syntax for message box;

MSGBOX ShowThisTextToTheUser$, , BoxTitle$

This syntax translate easily into Pure Basic as;

MessageRequester (BoxTitle$, ShowThisTextToTheUser$, #PB_MessageRequester_Ok)

2.3.10 Power Basic has the EXIT <structure> construct. Pure Basic uses the Break keyword. Power
Basic has the ITERATE keyword. Pure Basic uses the Continue keyword. The reason they are
listed last is because, in my opinion, they should be translated at the end of the process.
Remember your code is going thru a lot of changes and we all want to be bug free. Both
statements change the execution order and that change is easily “seen” once all the other
changes have been done. This way you’ll have a clearer understanding of where the
execution goes.

Page 12

3. The Process - Sharing the experience!
3.1 I make a copy of the code file and save it on the translation folder.
3.2 There I make another copy of that first copy and labeled it working

copy.
3.3 On that working copy change all the FUNCTION and SUB statements

first. Because then the IDE procedures tab will list all of the
procedures and navigation will be faster and easier.

3.4 Then change all END FUNCTION and END SUB statements. Then you
can use the folding feature of the IDE.

3.5 Then save another numbered copy of work in progress. Keep making
changes and saving numbered copies.

3.6 For the detail changes – get the whole procedure, paste it onto a
new tab of the IDE; work there and when all changes are done bring
back the whole procedure to the working copy.

3.7 Once you’re done use the syntax check (Menu-> Compiler -> Syntax
Check). That will show any missing details.

3.8 Testing and debugging. I follow the standard professional practices.

As you see it’s nothing fancy, just plain disciplined approach to the whole process.

The process can be automated?

Partially, Yes! It depends on many factors, but the most important is the coding
style used. Carefully crafted code can be automated. Sloppy or spaghetti code?
Well, it can be translated but will take more time and automation might be very
limited. The best way to know is to try. Translate one of your shorter programs
first. With this reference aid and that first experience automate part of the
process, tailoring it to your coding style and work practices.

Page 13

Conclusion

I know there are many more details that need to be addressed, that is why this
reference aid is a work in process. With this aid you have a format example to
organize your own reference guide. You receive assurance that translation can be
done within the common business constraints. And more importantly that others
are available to help with the doubts and issues that arise.

As explained migrating is easier than what it looks like. Just need to be careful and
organized in your approach. Happy coding!

Page 14

The End

	Introduction
	First the easy ones...
	Translation – the second level
	The Process - Sharing the experience!
	Conclusion

